DOI: 10.32758/2782-3040-2021-1-1-44-47
УДК 66-5
E. N. Levchenko
(Lukoil-Engineering Skills and Competencies LLC, Nizhny Novgorod, Russia)
Машинное обучение как инструмент оптимизации технологических процессов
Keywords: artificial intelligence, oil refining, machine learning, optimization of technological processes.
Abstract. The article discusses the problem of creating an optimization model of a technological process based on machine learning using the example of experience based on the H-Oil installation. The author showed the main approaches to such a model implementation, the architecture of the solution, and
assessed the economic effect of such approaches.
References
1. U. L Leffler. Oil refining. M.: Olymp-Business, 2011.
2. I. A. Sokolov. Theory and practice of using artificial intelligence methods // Bulletin of the Russian
Academy of Sciences. 2019. T. 89. No. 4. Р. 356–370.
3. Tuishev K. From the «golden age» to digital reality // Oil and gas vertical. 2019. No. 10. Р. 38–41.
4. S. Charrington. Artificial intelligence for industrial applications. 2017. 28 p. URL: tps://uploadsssl.webflow.com/5a6a107a0a6e6500019f9a5d/5bd87cc016e1ea3efb5c4420_CloudPulse_Industrial_AI_ Report_2017062301.pdf
5. D. Reinsel, J. Gantz, J. Rydning. The Digitization of the World. From Edge to Core. November 2018. 28 p. URL: https://www.seagate.com/www-content/our-story/trends/files/idc-seagate-dataage- hitepaper.pdf
6. V. I. Kuvykin, E. V. Kuvykina. Artificial neural network application to predict quality characteristics of petroleum produc // Modern high technologies. 2020. No. 4. Р. 26–30.
7. P. L. Logunov, M. V. Shamanin. Use of information technologies and mathematical models in production management // World of oil products. 2013. No. 7. Р. 28–30.
8. D. V. Pisarevsky, V. A. Budnik, K. A. Kutsuev, B. S. Zhirnov. Modern methods of mathematical processing and their role in the optimization of technological processes in petrochemistry and oil refining // Oil refining and petrochemistry. 2011. No. 8. Р. 16–20.
9. A. S. Nuzhny, I. S. Odnolko, A. Yu. Glukhov, I. V. Piskunov, I. M. Vyshinsky, E. N. Levchenko, A. S. Starikov. Using machine learning techniques to predict the content of sediments (hft) in an unconverted residue from the tar hydrocrackingunit // Oil refining and petrochemistry. 2020. No. 7. P. 1–8.
10. M. B. Lagutin. Visual mathematical statistics. In 2 vol. M.: P-center, 2003. Р. 343–345.
11. A. A. Yezhov, S. A. Shumsky. Neurocomputing and its applications in economics and business. Moscow: MEPhI, 1998.
12. J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine // The Annals of Statistics. 2001. Vol. 29. No. 5. P. 1189–1232.
13. A. S. Nuzhny. Bayesian regularization in the problem of approximating a function by points using
an orthogonalized basis // Mathematical Modeling. 2011. Vol. 23. No. 9. P. 33–42.
14. A. S. Nuzhny. Bayesian approach to the regularization of the problem of learning a network of functions of a radial basis // Artificial Intelligence and Decision Making. 2015. No. 2. P. 18–24.
15. L. Breiman. Random Forests // Machine Learning. 2001. Vol. 45. No. 1. 2001. P. 5–32.
16. L. G. Tugasheva. Virtual analyzers of indicators of the quality of the rectification process // Electrical
and information complexes and systems. 2013. Vol. 9. No. 3. P. 97–103.
17. A. V. Attetkov, S. V. Galkin, V. S. Zarubin. Optimization methods. 2001.
18. J. Nocedal, S. J. Wright. Numerical Optimization. Second Edition. 2006.