DOI: 10.32758/2782-3040-202-0-6-12-21
УДК 66.011
Е. N. Ivashkina 1, G. Y. Nazarova 1, E. D. Ivanchina 1, А. М. Vorobyev 2, А. V. Antonov 1,
Т. А. Kaliev1, G. R. Burumbaeva 3, М. Y. Mezhova 1
(1National research Tomsk Polytechnic University, Tomsk, Russia; 2University of Southampton, United Kingdom; 3 LLP «Pavlodar Petrochemical Plant», Pavladar, Kazakhstan)
Прогнозирование работы установки каталитического крекинга вакуумного дистиллята с применением нестационарной математической модели
Keywords: catalytic cracking, mathematical modeling, kinetic scheme, prediction, optimization, material balance, heat balance, zeolite-containing catalyst, catalyst deactivation, coke.
Abstract. This work presents the development of catalytic cracking mathematical model which is based on the thermodynamic and kinetic patterns of hydrocarbon conversions and takes into account the catalyst deactivation. This model provides a prediction of the catalytic cracking performance when the mixture of vacuum distillate from heavy Kazakhstan and West Siberian oils converts. The mathematical model helps predict the yield and composition of products depending on the feedstock properties and the operating variables of the riser. We develop practical recommendations to organize the riser technological mode to ensure the maximum yield of gasoline (52.6-56.1 wt.%), PPF and BBF (8.3-11.2 and 15.2-20.1 wt.%) when saturated and resinous feedstock converts.
References
1. Nazarova, G.Y., Ivashkina E.N., Ivanchina E.D., Vosmerikov A.V., Vosmerikova L.V., Antonov A.V. Model of Catalytic Cracking: Product Distribution and Catalyst Deactivation Depending on Saturates, Aromatics and Resins Content in Feed // Catalyst. 2021. Vol. 11, № 701. P. 1.
2. Zhou, X., Zhao M., Sheng N., Tang L., Feng X., Zhao H., Liu Y., Chen X., Yan H., Yang C. Enhancing light olefins and aromatics production from naphthenic-based vacuum gas oil: Process integration, techno-economic analysis and life cycle environmental assessment // Computers and Chemical Engineering. 2021. № 146, P. 1.
3. Doronin V.P., Potapenko O.V., Sorokina T.P., Lipin P.V., Dmitriev K.I., Kondrashev D.O., Kleimenov A.V. Features of petrochemical cracking catalysts produced by aluminosilicate technology // Catalyst Today. 2020. Vol. 378, № 15. P. 75.
4. Quan, S., Suoqi Z., Yasong Z., Jinsen G., Chunming X. Development of heavy oil upgrading technologies in China // Reviews in Chemical Engineering. 2019. Vol. 36, № 1. P. 1.
5. Shiyuan Sun, Hongfei Yan, Fandong Meng. Optimization of a Fluid Catalytic Cracking Kinetic Model by Improved Particle Swarm Optimization // Chemical Engineering & Technology. 2019. Vol. 43. №. 2. P. 289.
6. Xiaojing Zhao, Shiyuan Sun. A study on the lumped kinetic modeling method for fluid catalytic cracking // Chemical Engineering & Technology. 2020. Vol. 43. №. 12. P. 1.
7. Yang Chen, Wei Wang, Zhifeng Wang, kaijun Hou, Fusheng Ouyang, Dun Li. A 12-lump kinetic model for heavy oil fluid catalytic cracking for cleaning gasoline and enhancing light olefins yield // Petroleum Science and Technology. 2020. Vol. 38. №. 19. P. 1.
8. Fan Yang, Chaonan Dai, Jianquan Tang, Jin Xuan, Jun Cao. A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance // Chemical Engineering Research and Design. 2020. Vol. 155. P. 202.
9. Nazarova G.Yu., Ivashkina E.N., Ivanchina E.D., Oreshina A.A., Vymyatin E.K., Kaliev T.A.,
Popov R.D., Antonov A.V., Seytenova G.Zh. Modeling the operation of an industrial unit for catalytic cracking of vacuum gas oil from a mixture of Kazakh and West Siberian oil // World of oil products. 2020. No. 3. P. 6.